专业定制医疗锂电池
18年专注锂电池定制
机器人电池定制
低温锂电池

简化的离线式开关电源设计的研究

钜大LARGE  |  点击量:46次  |  2020年05月20日  

摘要
1 开关电源的原理介绍开关电源电路有许多种,但最常见的是反激式转换器,其原理如图1所示,电源输入首先经过整流,然后滤波,接下来经过变压器和初级开关,以及初级控制器;这个控制器根据反馈信号来改变开关的占空比,反馈 ...

1开关电源的原理介绍


开关电源电路有许多种,但最常见的是反激式转换器,其原理如图1所示,电源输入首先经过整流,然后滤波,接下来经过变压器和初级开关,以及初级控制器;这个控制器根据反馈信号来改变开关的占空比,反馈信号是由次级反馈而来。


图1开关电源的原理电路


尽管可采用电感器,但所示设计采用的是未隔离的变压器。隔离设计在离线设备中更为常见,在离线设备中,变压器具有隔离用途,可方便地实现占空比调整。反激式开关电源可在非持续导通和持续导通两种模式下工作,不持续导通模式如图2所示。Ilm和Vlm是变压器磁化电感通过的电流和施加的电压。


图2开关电源的两种导通模式


当开关闭合时,电压施加在变压器初级的两端,因为此时次级二极管是截止的,变压器所起的用途就像电感器。经过初级线圈的电流会上升,同时能量储存在磁通量中。当开关断开时,次级二极管导通,电流通过次级时会下降,因为能量被转换至次边大容量电容器。假如电流经过磁化电感区后降至零,这是不持续导通模式。假如磁化电流未降至零,如图3所示,则系统以持续导通模式工作。


图3开关电源的不持续导通模式


两种模式各有其优缺点,可根据设计要求进行选择。可以选择大负载的持续模式设计,或选择小负载的非持续模式设计。有电压和电流两种控制模式,在电压模式中,次边电压被反馈,直接控制工作循环;而在电流模式中,次边电压被反馈,控制最大的开关电流,即控制IC的pWM部分使开关闭合,当电流达到反馈设定的极限时,开关就断开。


2控制器的选择


过去,大多数SMpS系统采用分立控制器IC和用场效应晶体管(FET)作为开关,现在可以采用集成控制器,这些集成器件针对各种功率级别和应用进行了优化,通常可分为双芯片式和单芯片式两类。双芯片式包括控制器芯片和MOSFET芯片,而单芯片式仅有一个芯片,一般采用BCDMOS工艺制造。采用BCDMOS工艺制造高压功率MOSFET器件,它的局限性多于采用优化MOSFET工艺制造的器件。通常,采用BCDMOS工艺制造的芯片的单位面积RDS(on)值会高出许多。


然而,单芯片解决方法的成本较低,在低功率应用领域具有优势。因此,一般是为高功率应用选择双芯片方法,而为低功率应用选择单芯片方法,高低功率的分界点在15至20W左右,飞兆半导体有供应两种类型的功率开关。


3应用实例


图4所示为采用KA5M0365R的通用开关模式电源的电路图,KA5M0365R是双芯片器件。电源的输入电压为85~265VAC,开关频率为66kHz,输出为3.3V、1.2A,5V、1.5A,9V、0.5A和33V、0.1A.


图4采用KA5M0365R的通用开关模式电源的电路


内部MOSFET的额定值为3A和650V,但不是简单的MOSFET,而是SenseFET,其源极面积约有1%被隔离出来,形成次感应源极。漏极电流的1%来自感应源极,它流经集成电阻器,便于准确地测量电流值,不存在与外部电流采样电阻器相关的损耗。


自线路输入端开始,首先是一个用于抑制EMI的滤波器,接下来是桥型整流器、NTC电阻器和滤波电容器。NTC电阻器用于防止开关闭合时的电流浪涌。在第一次接通电源时,FpS以旁路模式工作,吸收极少的电流,Vcc电容器被充电,一旦达到电压锁定阈值15V范围的上限,该器件就开始开关,它的电流需求新增,Vcc电压开始下降。然而,假定Vcc电容器足够大,Vcc电压仍保持在电压锁定阈值范围的较低水平,在正常运作期间,第三线圈开始供电。


缓冲网络(SnubberNetwork)连接在变压器初级的两端,以确保变压器泄漏电感引起的尖峰信号,不会造成开关漏极电压超过其击穿电压。假如超过击穿电压,器件会发生雪崩,由于它具有一定的雪崩额定值,这样仅仅多消耗一点功率,不需配置昂贵的齐纳缓冲器。


有四个次级线圈供应四路电压输出,通过一个光耦,由431型电压参考器供应反馈信号。所有的离线式电源必须达到一定的安全标准,图4所示的设计具有良好的保护功能,得益于控制器具有的过载保护、过压保护、过流保护、欠压保护和过热保护特性。


4针对特定应用的改进


低功率电源常常是备用、辅助电源,或用于内务处理,FSDH0165或FSDH565等单芯片器件适用于此类电源,芯片集成了控制器和SenseFET.


由于器件采用BCDMOS技术制造,不存在起动电阻器。有可能将高压整流电源直接连接到器件上,其起动与双芯片器件相似,然而,差别是该器件用内部电流源为Vcc电容器充电,一旦Vcc引脚电压达到阈值电压,器件起动,电流源从内部断开,因此在正常运作期间,不从电路中直接吸取能量,因而效率提高。关于较高功率电源,可采用图5所示的系统,它与先前的系统很相似,但它以准谐振模式工作,Lm不是一个单独的元件,而是变压器的一部分。


图5离线式开关电源电路


在这种模式下,开关频率与输入电压和负载水平无关,在低输入电压和大负载的情况下,频率降低,而在高输入电压和小负载的情况下,开关频率升高。在最大输入电压下,所需频率不应超过最高开关频率150kHz,因此施加的负载应有所限制。准谐振模式的优点是EMI较低和效率较高。


这里未出现先前所用的传统RCD(电阻器电容器二极管)缓冲器,作为替代,采用一个与开关并联的小型电容器,电源开关配有一个额外的同步引脚,用于开通SenseFET.在次级二极管截止之前,其工作与非持续电流反激方式基本相同。在初级二极管截止后,开关管漏极开始振铃动作,频率由串联的电容器和初级电感量所决定。同步引脚电压开始下降,当电压超过阈值时,开关再次闭合。选择合适的同步引脚元件,使得漏极电压达到最小值时,同步电压达到阈值。该系统为软开关型,具有很小的EMI,因为漏极电压很小,开关损耗也降至最低。


6结语


总之,有几种方法可实现功率因数校正,从简单的无源解决方法到较复杂和性能较好的有源解决方法。飞兆半导体的ML4803采用小型8引脚封装,集成了pFC和pWMSMpS控制器,在技术和成本具有相当的优势。现在已经有多种适合不同应用和功率范围的器件,使离线式开关电源的设计变得更为简单。

声明: 本网站所发布文章,均来自于互联网,不代表本站观点,如有侵权,请联系删除(QQ:378886361)

点击阅读更多 v

上一篇:没有了

钜大精选

钜大核心技术能力